Learning the JAVA Language
Learning Java Concepts:

In this tutorial, we are going to learn about the concepts of the basics of the Java. First of all, What is Java? For this question, we have the best answer like “Java is a programming language, which is platform-independent and architecturally-neutral language, and it is an Object-Oriented Programming language.” It was released in 1965 by Sun Microsystems and is developed by James Gosling (PhD, Carnegie Mellon University).
The following are the basic concepts of Object-Oriented programming language.
1) What is an Object?
2) What is a class?
3) What is inheritance?
4) What is an interface?
5) What is package?
1) What is an Object?

An object is a software bundle of related state and behavior. Software objects are often used to model the real-world objects that you find in everyday life. Objects are key to understanding object-oriented technology. Look around right now and you'll find many examples of real-world objects: your dog, your desk, your television set, your bicycle.

Real-world objects share two characteristics: They all have state and behavior. Dogs have state (name, color, breed, hungry) and behavior (barking, fetching, wagging tail). Bicycles also have state (current gear, current pedal cadence, current speed) and behavior (changing gear, changing pedal cadence, applying brakes). Identifying the state and behavior for real-world objects is a great way to begin thinking in terms of object-oriented programming.

Take a minute right now to observe the real-world objects that are in your immediate area. For each object that you see, ask yourself two questions: "What possible states can this object be in?" and "What possible behavior can this object perform?". Make sure to write down your observations. As you do, you'll notice that real-world objects vary in complexity; your desktop lamp may have only two possible states (on and off) and two possible behaviors (turn on, turn off), but your desktop radio might have additional states (on, off, current volume, current station) and behavior (turn on, turn off, increase volume, decrease volume, seek, scan, and tune). You may also notice that some objects, in turn, will also contain other objects. These real-world observations all translate into the world of object-oriented programming.

[image: image1.png]Q0
Methods ﬁ Fields
bemavn s
)

A software object.

Software objects are conceptually similar to real-world objects: they too consist of state and related behavior. An object stores its state in fields (variables in some programming languages) and exposes its behavior through methods (functions in some programming languages). Methods operate on an object's internal state and serve as the primary mechanism for object-to-object communication. Hiding internal state and requiring all interaction to be performed through an object's methods is known as data encapsulation — a fundamental principle of object-oriented programming.

Consider a bicycle, for example:

[image: image2.png]18 mph

90 rpm

Change
cadence

5th gear

A bicycle modeled as a software object.

By attributing state (current speed, current pedal cadence, and current gear) and providing methods for changing that state, the object remains in control of how the outside world is allowed to use it. For example, if the bicycle only has 6 gears, a method to change gears could reject any value that is less than 1 or greater than 6.

Bundling code into individual software objects provides a number of benefits, including:

1. Modularity: The source code for an object can be written and maintained independently of the source code for other objects. Once created, an object can be easily passed around inside the system.

2. Information-hiding: By interacting only with an object's methods, the details of its internal implementation remain hidden from the outside world.

3. Code re-use: If an object already exists (perhaps written by another software developer), you can use that object in your program. This allows specialists to implement/test/debug complex, task-specific objects, which you can then trust to run in your own code.

4. Pluggability and debugging ease: If a particular object turns out to be problematic, you can simply remove it from your application and plug in a different object as its replacement. This is analogous to fixing mechanical problems in the real world. If a bolt breaks, you replace it, not the entire machine.

2) What is a Class?

A class is a blueprint or prototype from which objects are created
In the real world, you'll often find many individual objects all of the same kind. There may be thousands of other bicycles in existence, all of the same make and model. Each bicycle was built from the same set of blueprints and therefore contains the same components. In object-oriented terms, we say that your bicycle is an instance of the class of objects known as bicycles. A class is the blueprint from which individual objects are created.

The following Bicycle class is one possible implementation of a bicycle:

class Bicycle {

 int cadence = 0;

 int speed = 0;

 int gear = 1;

 void changeCadence(int newValue) {

 cadence = newValue;

 }

 void changeGear(int newValue) {

 gear = newValue;

 }

 void speedUp(int increment) {

 speed = speed + increment;

 }

 void applyBrakes(int decrement) {

 speed = speed - decrement;

 }

 void printStates() {

 System.out.println("cadence:"+cadence+"speed:"+speed+" gear:"+gear);

 }

}

The syntax of the Java programming language will look new to you, but the design of this class is based on the previous discussion of bicycle objects. The fields cadence, speed, and gear represent the object's state, and the methods (changeCadence, changeGear, speedUp etc.) define its interaction with the outside world.

You may have noticed that the Bicycle class does not contain a main method. That's because it's not a complete application; it's just the blueprint for bicycles that might be used in an application. The responsibility of creating and using new Bicycle objects belongs to some other class in your application.

Here's a BicycleDemo class that creates two separate Bicycle objects and invokes their methods:

class BicycleDemo {

 public static void main(String[] args) {

 // Create two different Bicycle objects

 Bicycle bike1 = new Bicycle();

 Bicycle bike2 = new Bicycle();

 // Invoke methods on those objects

 bike1.changeCadence(50);

 bike1.speedUp(10);

 bike1.changeGear(2);

 bike1.printStates();

 bike2.changeCadence(50);

 bike2.speedUp(10);

 bike2.changeGear(2);

 bike2.changeCadence(40);

 bike2.speedUp(10);

 bike2.changeGear(3);

 bike2.printStates();

 }

}

The output of this test prints the ending pedal cadence, speed, and gear for the two bicycles:

cadence:50 speed:10 gear:2

cadence:40 speed:20 gear:3

3) What is inheritance?
Inheritance provides a powerful and natural mechanism for organizing and structuring your software.
Different kinds of objects often have a certain amount in common with each other. Mountain bikes, road bikes, and tandem bikes, for example, all share the characteristics of bicycles (current speed, current pedal cadence, current gear). Yet each also defines additional features that make them different: tandem bicycles have two seats and two sets of handlebars; road bikes have drop handlebars; some mountain bikes have an additional chain ring, giving them a lower gear ratio.

Object-oriented programming allows classes to inherit commonly used state and behavior from other classes. In this example, Bicycle now becomes the superclass of MountainBike, RoadBike, and TandemBike. In the Java programming language, each class is allowed to have one direct superclass, and each superclass has the potential for an unlimited number of subclasses:

[image: image3.png]

A hierarchy of bicycle classes.

The syntax for creating a subclass is simple. At the beginning of your class declaration, use the extends keyword, followed by the name of the class to inherit from:

class MountainBike extends Bicycle {

 // new fields and methods defining a mountain bike would go here

}

This gives MountainBike all the same fields and methods as Bicycle, yet allows its code to focus exclusively on the features that make it unique. This makes code for your subclasses easy to read. However, you must take care to properly document the state and behavior that each superclass defines, since that code will not appear in the source file of each subclass.

4) What is an interface?

An interface is a contract between a class and the outside world. When a class implements an interface, it promises to provide the behavior published by that interface.

As you've already learned, objects define their interaction with the outside world through the methods that they expose. Methods form the object's interface with the outside world; the buttons on the front of your television set, for example, are the interface between you and the electrical wiring on the other side of its plastic casing. You press the "power" button to turn the television on and off.

In its most common form, an interface is a group of related methods with empty bodies. A bicycle's behavior, if specified as an interface, might appear as follows:

interface Bicycle {

 void changeCadence(int newValue); // wheel revolutions per minute

 void changeGear(int newValue);

 void speedUp(int increment);

 void applyBrakes(int decrement);

}

To implement this interface, the name of your class would change (to a particular brand of bicycle, for example, such as ACMEBicycle), and you'd use the implements keyword in the class declaration:

class ACMEBicycle implements Bicycle {

 // remainder of this class implemented as before

}

Implementing an interface allows a class to become more formal about the behavior it promises to provide. Interfaces form a contract between the class and the outside world, and this contract is enforced at build time by the compiler. If your class claims to implement an interface, all methods defined by that interface must appear in its source code before the class will successfully compile.

Note: To actually compile the ACMEBicycle class, you'll need to add the public keyword to the beginning of the implemented interface methods. You'll learn the reasons for this later in the lessons on Classes and Objects and Interfaces and Inheritance.

5) What is a package?

A package is a namespace for organizing classes and interfaces in a logical manner. Placing your code into packages makes large software projects easier to manage.
A package is a namespace that organizes a set of related classes and interfaces. Conceptually you can think of packages as being similar to different folders on your computer. You might keep HTML pages in one folder, images in another, and scripts or applications in yet another. Because software written in the Java programming language can be composed of hundreds or thousands of individual classes, it makes sense to keep things organized by placing related classes and interfaces into packages.

The Java platform provides an enormous class library (a set of packages) suitable for use in your own applications. This library is known as the "Application Programming Interface", or "API" for short. Its packages represent the tasks most commonly associated with general-purpose programming. For example, a String object contains state and behavior for character strings; a File object allows a programmer to easily create, delete, inspect, compare, or modify a file on the filesystem; a Socket object allows for the creation and use of network sockets; various GUI objects control buttons and checkboxes and anything else related to graphical user interfaces. There are literally thousands of classes to choose from. This allows you, the programmer, to focus on the design of your particular application, rather than the infrastructure required to make it work.

The Java Platform API Specification contains the complete listing for all packages, interfaces, classes, fields, and methods supplied by the Java Platform 6, Standard Edition. Load the page in your browser and bookmark it. As a programmer, it will become your single most important piece of reference documentation.

Language Basics:
1) Variables
2) Operators
3) Expressions, Statements, and Blocks
4) Control Flow Statements
1) Variables:

As you learned in the previous lesson, an object stores its state in fields.

int cadence = 0;
int speed = 0;
int gear = 1;
What is an object? discussion introduced you to fields, but you probably have still a few questions, such as: What are the rules and conventions for naming a field? Besides int, what other data types are there? Do fields have to be initialized when they are declared? Are fields assigned a default value if they are not explicitly initialized? We'll explore the answers to such questions in this lesson, but before we do, there are a few technical distinctions you must first become aware of. In the Java programming language, the terms "field" and "variable" are both used; this is a common source of confusion among new developers, since both often seem to refer to the same thing.

The Java programming language defines the following kinds of variables:

· Instance Variables (Non-Static Fields) Technically speaking, objects store their individual states in "non-static fields", that is, fields declared without the static keyword. Non-static fields are also known as instance variables because their values are unique to each instance of a class (to each object, in other words); the currentSpeed of one bicycle is independent from the currentSpeed of another.

· Class Variables (Static Fields) A class variable is any field declared with the static modifier; this tells the compiler that there is exactly one copy of this variable in existence, regardless of how many times the class has been instantiated. A field defining the number of gears for a particular kind of bicycle could be marked as static since conceptually the same number of gears will apply to all instances. The code static int numGears = 6; would create such a static field. Additionally, the keyword final could be added to indicate that the number of gears will never change.

· Local Variables Similar to how an object stores its state in fields, a method will often store its temporary state in local variables. The syntax for declaring a local variable is similar to declaring a field (for example, int count = 0;). There is no special keyword designating a variable as local; that determination comes entirely from the location in which the variable is declared — which is between the opening and closing braces of a method. As such, local variables are only visible to the methods in which they are declared; they are not accessible from the rest of the class.

· Parameters You've already seen examples of parameters, both in the Bicycle class and in the main method of the "Hello World!" application. Recall that the signature for the main method is public static void main(String[] args). Here, the args variable is the parameter to this method. The important thing to remember is that parameters are always classified as "variables" not "fields". This applies to other parameter-accepting constructs as well (such as constructors and exception handlers) that you'll learn about later in the tutorial.

Having said that, the remainder of this tutorial uses the following general guidelines when discussing fields and variables. If we are talking about "fields in general" (excluding local variables and parameters), we may simply say "fields". If the discussion applies to "all of the above", we may simply say "variables". If the context calls for a distinction, we will use specific terms (static field, local variables, etc.) as appropriate. You may also occasionally see the term "member" used as well. A type's fields, methods, and nested types are collectively called its members.

Naming

Every programming language has its own set of rules and conventions for the kinds of names that you're allowed to use, and the Java programming language is no different. The rules and conventions for naming your variables can be summarized as follows:

· Variable names are case-sensitive. A variable's name can be any legal identifier — an unlimited-length sequence of Unicode letters and digits, beginning with a letter, the dollar sign "$", or the underscore character "_". The convention, however, is to always begin your variable names with a letter, not "$" or "_". Additionally, the dollar sign character, by convention, is never used at all. You may find some situations where auto-generated names will contain the dollar sign, but your variable names should always avoid using it. A similar convention exists for the underscore character; while it's technically legal to begin your variable's name with "_", this practice is discouraged. White space is not permitted.

· Subsequent characters may be letters, digits, dollar signs, or underscore characters. Conventions (and common sense) apply to this rule as well. When choosing a name for your variables, use full words instead of cryptic abbreviations. Doing so will make your code easier to read and understand. In many cases it will also make your code self-documenting; fields named cadence, speed, and gear, for example, are much more intuitive than abbreviated versions, such as s, c, and g. Also keep in mind that the name you choose must not be a keyword or reserved word.

· If the name you choose consists of only one word, spell that word in all lowercase letters. If it consists of more than one word, capitalize the first letter of each subsequent word. The names gearRatio and currentGear are prime examples of this convention. If your variable stores a constant value, such as static final int NUM_GEARS = 6, the convention changes slightly, capitalizing every letter and separating subsequent words with the underscore character. By convention, the underscore character is never used elsewhere.

Primitive Data Types

The Java programming language is statically-typed, which means that all variables must first be declared before they can be used. This involves stating the variable's type and name, as you've already seen:

int gear = 1;

Doing so tells your program that a field named "gear" exists, holds numerical data, and has an initial value of "1". A variable's data type determines the values it may contain, plus the operations that may be performed on it. In addition to int, the Java programming language supports seven other primitive data types. A primitive type is predefined by the language and is named by a reserved keyword. Primitive values do not share state with other primitive values. The eight primitive data types supported by the Java programming language are:

· byte: The byte data type is an 8-bit signed two's complement integer. It has a minimum value of -128 and a maximum value of 127 (inclusive). The byte data type can be useful for saving memory in large arrays, where the memory savings actually matters. They can also be used in place of int where their limits help to clarify your code; the fact that a variable's range is limited can serve as a form of documentation.

· short: The short data type is a 16-bit signed two's complement integer. It has a minimum value of -32,768 and a maximum value of 32,767 (inclusive). As with byte, the same guidelines apply: you can use a short to save memory in large arrays, in situations where the memory savings actually matters.

· int: The int data type is a 32-bit signed two's complement integer. It has a minimum value of -2,147,483,648 and a maximum value of 2,147,483,647 (inclusive). For integral values, this data type is generally the default choice unless there is a reason (like the above) to choose something else. This data type will most likely be large enough for the numbers your program will use, but if you need a wider range of values, use long instead.

· long: The long data type is a 64-bit signed two's complement integer. It has a minimum value of -9,223,372,036,854,775,808 and a maximum value of 9,223,372,036,854,775,807 (inclusive). Use this data type when you need a range of values wider than those provided by int.

· float: The float data type is a single-precision 32-bit IEEE 754 floating point. As with the recommendations for byte and short, use a float (instead of double) if you need to save memory in large arrays of floating point numbers. This data type should never be used for precise values, such as currency. For that, you will need to use the java.math.BigDecimal class instead. Numbers and Strings covers BigDecimal and other useful classes provided by the Java platform.

· double: The double data type is a double-precision 64-bit IEEE 754 floating point. For decimal values, this data type is generally the default choice. As mentioned above, this data type should never be used for precise values, such as currency.

· boolean: The boolean data type has only two possible values: true and false. Use this data type for simple flags that track true/false conditions. This data type represents one bit of information, but its "size" isn't something that's precisely defined.

· char: The char data type is a single 16-bit Unicode character. It has a minimum value of '\u0000' (or 0) and a maximum value of '\uffff' (or 65,535 inclusive).

In addition to the eight primitive data types listed above, the Java programming language also provides special support for character strings via the java.lang.String class. Enclosing your character string within double quotes will automatically create a new String object; for example, String s = "this is a string";. String objects are immutable, which means that once created, their values cannot be changed. The String class is not technically a primitive data type, but considering the special support given to it by the language, you'll probably tend to think of it as such. You'll learn more about the String class in Simple Data Objects
Default Values

It's not always necessary to assign a value when a field is declared. Fields that are declared but not initialized will be set to a reasonable default by the compiler. Generally speaking, this default will be zero or null, depending on the data type. Relying on such default values, however, is generally considered bad programming style.

The following chart summarizes the default values for the above data types.

	Data Type
	Default Value (for fields)

	byte
	0

	short
	0

	int
	0

	long
	0L

	float
	0.0f

	double
	0.0d

	char
	'\u0000'

	String (or any object)
	null

	boolean
	false

Local variables are slightly different; the compiler never assigns a default value to an uninitialized local variable. If you cannot initialize your local variable where it is declared, make sure to assign it a value before you attempt to use it. Accessing an uninitialized local variable will result in a compile-time error.

Literals

You may have noticed that the new keyword isn't used when initializing a variable of a primitive type. Primitive types are special data types built into the language; they are not objects created from a class. A literal is the source code representation of a fixed value; literals are represented directly in your code without requiring computation. As shown below, it's possible to assign a literal to a variable of a primitive type:

 boolean result = true;

 char capitalC = 'C';

 byte b = 100;

 short s = 10000;

 int i = 100000;

The integral types (byte, short, int, and long) can be expressed using decimal, octal, hexadecimal, or binary number systems. (You can create binary literals in Java SE 7 and later.) Decimal is the number system you already use every day; it's based on 10 digits, numbered 0 through 9. The octal number system is base 8, consisting of the digits 0 through 7. The hexadecimal system is base 16, whose digits are the numbers 0 through 9 and the letters A through F. The binary system is base 2, whose digits are the numbers 0 and 1. For general-purpose programming, the decimal system is likely to be the only number system you'll ever use. However, if you need octal, hexadecimal, or binary numbers, the following example shows the correct syntax. The prefix 0 indicates octal, 0x indicates hexadecimal, and 0b indicates binary:

 int decVal = 26;
 // The number 26, in decimal

 int octVal = 032;
 // The number 26, in octal

 int hexVal = 0x1a;
 // The number 26, in hexadecimal

 int binVal = 0b11010; // The number 26, in binary

The floating point types (float and double) can also be expressed using E or e (for scientific notation), F or f (32-bit float literal) and D or d (64-bit double literal; this is the default and by convention is omitted).

 double d1 = 123.4;

 double d2 = 1.234e2; // same value as d1, but in scientific notation

 float f1 = 123.4f;

Literals of types char and String may contain any Unicode (UTF-16) characters. If your editor and file system allow it, you can use such characters directly in your code. If not, you can use a "Unicode escape" such as '\u0108' (capital C with circumflex), or "S\u00ED se\u00F1or" (Sí Señor in Spanish). Always use 'single quotes' for char literals and "double quotes" for String literals. Unicode escape sequences may be used elsewhere in a program (such as in field names, for example), not just in char or String literals.

The Java programming language also supports a few special escape sequences for char and String literals: \b (backspace), \t (tab), \n (line feed), \f (form feed), \r (carriage return), \" (double quote), \' (single quote), and \\ (backslash).

There's also a special null literal that can be used as a value for any reference type. null may be assigned to any variable, except variables of primitive types. There's little you can do with a null value beyond testing for its presence. Therefore, null is often used in programs as a marker to indicate that some object is unavailable.

Finally, there's also a special kind of literal called a class literal, formed by taking a type name and appending ".class"; for example, String.class. This refers to the object (of type Class) that represents the type itself.

Using Underscore Characters in Numeric Literals

In Java SE 7 and later, any number of underscore characters (_) can appear anywhere between digits in a numerical literal. This feature enables you, for example. to separate groups of digits in numeric literals, which can improve the readability of your code.

For instance, if your code contains numbers with many digits, you can use an underscore character to separate digits in groups of three, similar to how you would use a punctuation mark like a comma, or a space, as a separator.

The following example shows other ways you can use the underscore in numeric literals:

long creditCardNumber = 1234_5678_9012_3456L;

long socialSecurityNumber = 999_99_9999L;

float pi =
3.14_15F;

long hexBytes = 0xFF_EC_DE_5E;

long hexWords = 0xCAFE_BABE;

long maxLong = 0x7fff_ffff_ffff_ffffL;

byte nybbles = 0b0010_0101;

long bytes = 0b11010010_01101001_10010100_10010010;

You can place underscores only between digits; you cannot place underscores in the following places:

· At the beginning or end of a number

· Adjacent to a decimal point in a floating point literal

· Prior to an F or L suffix

· In positions where a string of digits is expected

The following examples demonstrate valid and invalid underscore placements in numeric literals:

float pi1 = 3_.1415F; // Invalid; cannot put underscores adjacent to a decimal point

float pi2 = 3._1415F; // Invalid; cannot put underscores adjacent to a decimal point

long socialSecurityNumber1

 = 999_99_9999_L; // Invalid; cannot put underscores prior to an L suffix

int x1 = _52; // This is an identifier, not a numeric literal

int x2 = 5_2; // OK (decimal literal)

int x3 = 52_; // Invalid; cannot put underscores at the end of a literal

int x4 = 5_______2; // OK (decimal literal)

int x5 = 0_x52; // Invalid; cannot put underscores in the 0x radix prefix

int x6 = 0x_52; // Invalid; cannot put underscores at the beginning of a number

int x7 = 0x5_2; // OK (hexadecimal literal)

int x8 = 0x52_; // Invalid; cannot put underscores at the end of a number

int x9 = 0_52; // OK (octal literal)

int x10 = 05_2; // OK (octal literal)

int x11 = 052_; // Invalid; cannot put underscores at the end of a number

Arrays

An array is a container object that holds a fixed number of values of a single type. The length of an array is established when the array is created. After creation, its length is fixed. You've seen an example of arrays already, in the main method of the "Hello World!" application. This section discusses arrays in greater detail.

[image: image4.png]Element
First index (at index 8)

1 2 3 4 5 6 7\8 9— Indices

4— Array length is 10—

An array of ten elements

Each item in an array is called an element, and each element is accessed by its numerical index. As shown in the above illustration, numbering begins with 0. The 9th element, for example, would therefore be accessed at index 8.

The following program, ArrayDemo, creates an array of integers, puts some values in it, and prints each value to standard output.

class ArrayDemo {

 public static void main(String[] args) {

 int[] anArray; // declares an array of integers

 anArray = new int[10]; // allocates memory for 10 integers

 anArray[0] = 100; // initialize first element

 anArray[1] = 200; // initialize second element

 anArray[2] = 300; // etc.

 anArray[3] = 400;

 anArray[4] = 500;

 anArray[5] = 600;

 anArray[6] = 700;

 anArray[7] = 800;

 anArray[8] = 900;

 anArray[9] = 1000;

 System.out.println("Element at index 0: " + anArray[0]);

 System.out.println("Element at index 1: " + anArray[1]);

 System.out.println("Element at index 2: " + anArray[2]);

 System.out.println("Element at index 3: " + anArray[3]);

 System.out.println("Element at index 4: " + anArray[4]);

 System.out.println("Element at index 5: " + anArray[5]);

 System.out.println("Element at index 6: " + anArray[6]);

 System.out.println("Element at index 7: " + anArray[7]);

 System.out.println("Element at index 8: " + anArray[8]);

 System.out.println("Element at index 9: " + anArray[9]);

 }

}

The output from this program is:

Element at index 0: 100

Element at index 1: 200

Element at index 2: 300

Element at index 3: 400

Element at index 4: 500

Element at index 5: 600

Element at index 6: 700

Element at index 7: 800

Element at index 8: 900

Element at index 9: 1000

In a real-world programming situation, you'd probably use one of the supported looping constructs to iterate through each element of the array, rather than write each line individually as shown above. However, this example clearly illustrates the array syntax. You'll learn about the various looping constructs (for, while, and do-while) in the Control Flow section.

Declaring a Variable to Refer to an Array

The above program declares anArray with the following line of code:

int[] anArray; // declares an array of integers

Like declarations for variables of other types, an array declaration has two components: the array's type and the array's name. An array's type is written as type[], where type is the data type of the contained elements; the square brackets are special symbols indicating that this variable holds an array. The size of the array is not part of its type (which is why the brackets are empty). An array's name can be anything you want, provided that it follows the rules and conventions as previously discussed in the naming section. As with variables of other types, the declaration does not actually create an array — it simply tells the compiler that this variable will hold an array of the specified type.

Similarly, you can declare arrays of other types:

byte[] anArrayOfBytes;

short[] anArrayOfShorts;

long[] anArrayOfLongs;

float[] anArrayOfFloats;

double[] anArrayOfDoubles;

boolean[] anArrayOfBooleans;

char[] anArrayOfChars;

String[] anArrayOfStrings;

You can also place the square brackets after the array's name:

float anArrayOfFloats[]; // this form is discouraged

However, convention discourages this form; the brackets identify the array type and should appear with the type designation.

Creating, Initializing, and Accessing an Array

One way to create an array is with the new operator. The next statement in the ArrayDemo program allocates an array with enough memory for ten integer elements and assigns the array to the anArray variable.

anArray = new int[10]; // create an array of integers

If this statement were missing, the compiler would print an error like the following, and compilation would fail:

ArrayDemo.java:4: Variable anArray may not have been initialized.

The next few lines assign values to each element of the array:

anArray[0] = 100; // initialize first element

anArray[1] = 200; // initialize second element

anArray[2] = 300; // etc.

Each array element is accessed by its numerical index:

System.out.println("Element 1 at index 0: " + anArray[0]);

System.out.println("Element 2 at index 1: " + anArray[1]);

System.out.println("Element 3 at index 2: " + anArray[2]);

Alternatively, you can use the shortcut syntax to create and initialize an array:

int[] anArray = {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000};

Here the length of the array is determined by the number of values provided between { and }.

You can also declare an array of arrays (also known as a multidimensional array) by using two or more sets of square brackets, such as String[][] names. Each element, therefore, must be accessed by a corresponding number of index values.

In the Java programming language, a multidimensional array is simply an array whose components are themselves arrays. This is unlike arrays in C or Fortran. A consequence of this is that the rows are allowed to vary in length, as shown in the following MultiDimArrayDemo program:

class MultiDimArrayDemo {

 public static void main(String[] args) {

 String[][] names = {{"Mr. ", "Mrs. ", "Ms. "},

 {"Smith", "Jones"}};

 System.out.println(names[0][0] + names[1][0]); //Mr. Smith

 System.out.println(names[0][2] + names[1][1]); //Ms. Jones

 }

}

The output from this program is:

 Mr. Smith

 Ms. Jones

Finally, you can use the built-in length property to determine the size of any array. The code

 System.out.println(anArray.length);

will print the array's size to standard output.

Copying Arrays

The System class has an arraycopy method that you can use to efficiently copy data from one array into another:

public static void arraycopy(Object src,

 int srcPos,

 Object dest,

 int destPos,

 int length)

The two Object arguments specify the array to copy from and the array to copy to. The three int arguments specify the starting position in the source array, the starting position in the destination array, and the number of array elements to copy.

The following program, ArrayCopyDemo, declares an array of char elements, spelling the word "decaffeinated". It uses arraycopy to copy a subsequence of array components into a second array:

class ArrayCopyDemo {

 public static void main(String[] args) {

 char[] copyFrom = { 'd', 'e', 'c', 'a', 'f', 'f', 'e',

 'i', 'n', 'a', 't', 'e', 'd' };

 char[] copyTo = new char[7];

 System.arraycopy(copyFrom, 2, copyTo, 0, 7);

 System.out.println(new String(copyTo));

 }

}

The output from this program is:

caffein

2) Operators:

Learning the operators of the Java programming language is a good place to start. Operators are special symbols that perform specific operations on one, two, or three operands, and then return a result.

The operators in the following table are listed according to precedence order. The closer to the top of the table an operator appears, the higher its precedence. Operators with higher precedence are evaluated before operators with relatively lower precedence. Operators on the same line have equal precedence. When operators of equal precedence appear in the same expression, a rule must govern which is evaluated first. All binary operators except for the assignment operators are evaluated from left to right; assignment operators are evaluated right to left.

	Operator Precedence

	Operators
	Precedence

	postfix
	expr++ expr--

	unary
	++expr --expr +expr -expr ~ !

	multiplicative
	* / %

	additive
	+ -

	shift
	<< >> >>>

	relational
	< > <= >= instanceof

	equality
	== !=

	bitwise AND
	&

	bitwise exclusive OR
	^

	bitwise inclusive OR
	|

	logical AND
	&&

	logical OR
	||

	ternary
	? :

	assignment
	= += -= *= /= %= &= ^= |= <<= >>= >>>=

In general-purpose programming, certain operators tend to appear more frequently than others; for example, the assignment operator "=" is far more common than the unsigned right shift operator ">>>". With that in mind, the following discussion focuses first on the operators that you're most likely to use on a regular basis, and ends focusing on those that are less common. Each discussion is accompanied by sample code that you can compile and run. Studying its output will help reinforce what you've just learned.

Assignment, Arithmetic, and Unary Operators:
The Simple Assignment Operator:
One of the most common operators that you'll encounter is the simple assignment operator "=". You saw this operator in the Bicycle class; it assigns the value on its right to the operand on its left:

 int cadence = 0;

 int speed = 0;

 int gear = 1;

This operator can also be used on objects to assign object references, as discussed in Creating Objects.

The Arithmetic Operators

The Java programming language provides operators that perform addition, subtraction, multiplication, and division. There's a good chance you'll recognize them by their counterparts in basic mathematics. The only symbol that might look new to you is "%", which divides one operand by another and returns the remainder as its result.

+
additive operator (also used for String concatenation)

-
subtraction operator

*
multiplication operator

/
division operator

%
remainder operator

The following program, ArithmeticDemo, tests the arithmetic operators.

class ArithmeticDemo {

 public static void main (String[] args){

 int result = 1 + 2; // result is now 3

 System.out.println(result);

 result = result - 1; // result is now 2

 System.out.println(result);

 result = result * 2; // result is now 4

 System.out.println(result);

 result = result / 2; // result is now 2

 System.out.println(result);

 result = result + 8; // result is now 10

 result = result % 7; // result is now 3

 System.out.println(result);

 }

}

You can also combine the arithmetic operators with the simple assignment operator to create compound assignments. For example, x+=1; and x=x+1; both increment the value of x by 1.

The + operator can also be used for concatenating (joining) two strings together, as shown in the following ConcatDemo program:

class ConcatDemo {

 public static void main(String[] args){

 String firstString = "This is";

 String secondString = " a concatenated string.";

 String thirdString = firstString+secondString;

 System.out.println(thirdString);

 }

}

By the end of this program, the variable thirdString contains "This is a concatenated string.", which gets printed to standard output.

The Unary Operators

The unary operators require only one operand; they perform various operations such as incrementing/decrementing a value by one, negating an expression, or inverting the value of a boolean.

+
Unary plus operator; indicates positive value (numbers are positive without this, however)

-
Unary minus operator; negates an expression

++
Increment operator; increments a value by 1

--
Decrement operator; decrements a value by 1

!
Logical complement operator; inverts the value of a boolean

The following program, UnaryDemo, tests the unary operators:

class UnaryDemo {

 public static void main(String[] args){

 int result = +1; // result is now 1

 System.out.println(result);

 result--; // result is now 0

 System.out.println(result);

 result++; // result is now 1

 System.out.println(result);

 result = -result; // result is now -1

 System.out.println(result);

 boolean success = false;

 System.out.println(success); // false

 System.out.println(!success); // true

 }

}

The increment/decrement operators can be applied before (prefix) or after (postfix) the operand. The code result++; and ++result; will both end in result being incremented by one. The only difference is that the prefix version (++result) evaluates to the incremented value, whereas the postfix version (result++) evaluates to the original value. If you are just performing a simple increment/decrement, it doesn't really matter which version you choose. But if you use this operator in part of a larger expression, the one that you choose may make a significant difference.

The following program, PrePostDemo, illustrates the prefix/postfix unary increment operator:

class PrePostDemo {

 public static void main(String[] args){

 int i = 3;

 i++;

 System.out.println(i);
// "4"

 ++i;

 System.out.println(i);
// "5"

 System.out.println(++i);
// "6"

 System.out.println(i++);
// "6"

 System.out.println(i);
// "7"

 }

}

Equality, Relational, and Conditional Operators

The Equality and Relational Operators

The equality and relational operators determine if one operand is greater than, less than, equal to, or not equal to another operand. The majority of these operators will probably look familiar to you as well. Keep in mind that you must use "==", not "=", when testing if two primitive values are equal.

==
equal to

!=
not equal to

>
greater than

>=
greater than or equal to

<
less than

<=
less than or equal to

The following program, ComparisonDemo, tests the comparison operators:

class ComparisonDemo {

 public static void main(String[] args){

 int value1 = 1;

 int value2 = 2;

 if(value1 == value2) System.out.println("value1 == value2");

 if(value1 != value2) System.out.println("value1 != value2");

 if(value1 > value2) System.out.println("value1 > value2");

 if(value1 < value2) System.out.println("value1 < value2");

 if(value1 <= value2) System.out.println("value1 <= value2");

 }

}

Output:

value1 != value2

value1 < value2

value1 <= value2

The Conditional Operators

The && and || operators perform Conditional-AND and Conditional-OR operations on two boolean expressions. These operators exhibit "short-circuiting" behavior, which means that the second operand is evaluated only if needed.

&& Conditional-AND

|| Conditional-OR

The following program, ConditionalDemo1, tests these operators:

class ConditionalDemo1 {

 public static void main(String[] args){

 int value1 = 1;

 int value2 = 2;

 if((value1 == 1) && (value2 == 2)) System.out.println("value1 is 1 AND value2 is 2");

 if((value1 == 1) || (value2 == 1)) System.out.println("value1 is 1 OR value2 is 1");

 }

}

Another conditional operator is ?:, which can be thought of as shorthand for an if-then-else statement (discussed in the Control Flow Statements section of this lesson). This operator is also known as the ternary operator because it uses three operands. In the following example, this operator should be read as: "If someCondition is true, assign the value of value1 to result. Otherwise, assign the value of value2 to result."

The following program, ConditionalDemo2, tests the ?: operator:

class ConditionalDemo2 {

 public static void main(String[] args){

 int value1 = 1;

 int value2 = 2;

 int result;

 boolean someCondition = true;

 result = someCondition ? value1 : value2;

 System.out.println(result);

 }

}

Because someCondition is true, this program prints "1" to the screen. Use the ?: operator instead of an if-then-else statement if it makes your code more readable; for example, when the expressions are compact and without side-effects (such as assignments).

The Type Comparison Operator instanceof

The instanceof operator compares an object to a specified type. You can use it to test if an object is an instance of a class, an instance of a subclass, or an instance of a class that implements a particular interface.

The following program, InstanceofDemo, defines a parent class (named Parent), a simple interface (named MyInterface), and a child class (named Child) that inherits from the parent and implements the interface.

class InstanceofDemo {

 public static void main(String[] args) {

 Parent obj1 = new Parent();

 Parent obj2 = new Child();

 System.out.println("obj1 instanceof Parent: " + (obj1 instanceof Parent));

 System.out.println("obj1 instanceof Child: " + (obj1 instanceof Child));

 System.out.println("obj1 instanceof MyInterface: " + (obj1 instanceof MyInterface));

 System.out.println("obj2 instanceof Parent: " + (obj2 instanceof Parent));

 System.out.println("obj2 instanceof Child: " + (obj2 instanceof Child));

 System.out.println("obj2 instanceof MyInterface: " + (obj2 instanceof MyInterface));

 }

}

class Parent{}

class Child extends Parent implements MyInterface{}

interface MyInterface{}

Output:

obj1 instanceof Parent: true

obj1 instanceof Child: false

obj1 instanceof MyInterface: false

obj2 instanceof Parent: true

obj2 instanceof Child: true

obj2 instanceof MyInterface: true

When using the instanceof operator, keep in mind that null is not an instance of anything.

Bitwise and Bit Shift Operators

The Java programming language also provides operators that perform bitwise and bit shift operations on integral types. The operators discussed in this section are less commonly used. Therefore, their coverage is brief; the intent is to simply make you aware that these operators exist.

The unary bitwise complement operator "~" inverts a bit pattern; it can be applied to any of the integral types, making every "0" a "1" and every "1" a "0". For example, a byte contains 8 bits; applying this operator to a value whose bit pattern is "00000000" would change its pattern to "11111111".

The signed left shift operator "<<" shifts a bit pattern to the left, and the signed right shift operator ">>" shifts a bit pattern to the right. The bit pattern is given by the left-hand operand, and the number of positions to shift by the right-hand operand. The unsigned right shift operator ">>>" shifts a zero into the leftmost position, while the leftmost position after ">>" depends on sign extension.

The bitwise & operator performs a bitwise AND operation.

The bitwise ^ operator performs a bitwise exclusive OR operation.

The bitwise | operator performs a bitwise inclusive OR operation.

The following program, BitDemo, uses the bitwise AND operator to print the number "2" to standard output.

class BitDemo {

 public static void main(String[] args) {

 int bitmask = 0x000F;

 int val = 0x2222;

 System.out.println(val & bitmask); // prints "2"

 }

}

3) Expressions, Statements, and Blocks:

Now that you understand variables and operators, it's time to learn about expressions, statements, and blocks. Operators may be used in building expressions, which compute values; expressions are the core components of statements; statements may be grouped into blocks.

Expressions

An expression is a construct made up of variables, operators, and method invocations, which are constructed according to the syntax of the language, that evaluates to a single value. You've already seen examples of expressions, illustrated in bold below:

 int cadence = 0;
 anArray[0] = 100;
 System.out.println("Element 1 at index 0: " + anArray[0]);
 int result = 1 + 2; // result is now 3
 if(value1 == value2) System.out.println("value1 == value2");
The data type of the value returned by an expression depends on the elements used in the expression. The expression cadence = 0 returns an int because the assignment operator returns a value of the same data type as its left-hand operand; in this case, cadence is an int. As you can see from the other expressions, an expression can return other types of values as well, such as boolean or String.

The Java programming language allows you to construct compound expressions from various smaller expressions as long as the data type required by one part of the expression matches the data type of the other. Here's an example of a compound expression:

1 * 2 * 3

In this particular example, the order in which the expression is evaluated is unimportant because the result of multiplication is independent of order; the outcome is always the same, no matter in which order you apply the multiplications. However, this is not true of all expressions. For example, the following expression gives different results, depending on whether you perform the addition or the division operation first:

x + y / 100 // ambiguous

You can specify exactly how an expression will be evaluated using balanced parenthesis: (and). For example, to make the previous expression unambiguous, you could write the following:

(x + y) / 100 // unambiguous, recommended

If you don't explicitly indicate the order for the operations to be performed, the order is determined by the precedence assigned to the operators in use within the expression. Operators that have a higher precedence get evaluated first. For example, the division operator has a higher precedence than does the addition operator. Therefore, the following two statements are equivalent:

x + y / 100

x + (y / 100) // unambiguous, recommended

When writing compound expressions, be explicit and indicate with parentheses which operators should be evaluated first. This practice makes code easier to read and to maintain.

Statements

Statements are roughly equivalent to sentences in natural languages. A statement forms a complete unit of execution. The following types of expressions can be made into a statement by terminating the expression with a semicolon (;).

· Assignment expressions

· Any use of ++ or --

· Method invocations

· Object creation expressions

Such statements are called expression statements. Here are some examples of expression statements.

aValue = 8933.234; // assignment statement

aValue++; // increment statement

System.out.println("Hello World!"); // method invocation statement

Bicycle myBike = new Bicycle(); // object creation statement

In addition to expression statements, there are two other kinds of statements: declaration statements and control flow statements. A declaration statement declares a variable. You've seen many examples of declaration statements already:

double aValue = 8933.234; //declaration statement

Finally, control flow statements regulate the order in which statements get executed.

Blocks

A block is a group of zero or more statements between balanced braces and can be used anywhere a single statement is allowed. The following example, BlockDemo, illustrates the use of blocks:

class BlockDemo {

 public static void main(String[] args) {

 boolean condition = true;

 if (condition) { // begin block 1
 System.out.println("Condition is true.");

 } // end block one
 else { // begin block 2
 System.out.println("Condition is false.");

 } // end block 2
 }

}

4) Control Flow Statements:

The statements inside your source files are generally executed from top to bottom, in the order that they appear. Control flow statements, however, break up the flow of execution by employing decision making, looping, and branching, enabling your program to conditionally execute particular blocks of code. This section describes the decision-making statements (if-then, if-then-else, switch), the looping statements (for, while, do-while), and the branching statements (break, continue, return) supported by the Java programming language.

The if-then and if-then-else Statements

The if-then Statement

The if-then statement is the most basic of all the control flow statements. It tells your program to execute a certain section of code only if a particular test evaluates to true. For example, the Bicycle class could allow the brakes to decrease the bicycle's speed only if the bicycle is already in motion. One possible implementation of the applyBrakes method could be as follows:

void applyBrakes(){

 if (isMoving){ // the "if" clause: bicycle must be moving

 currentSpeed--; // the "then" clause: decrease current speed

 }

}

If this test evaluates to false (meaning that the bicycle is not in motion), control jumps to the end of the if-then statement.

In addition, the opening and closing braces are optional, provided that the "then" clause contains only one statement:

void applyBrakes(){

 if (isMoving) currentSpeed--; // same as above, but without braces

}

Deciding when to omit the braces is a matter of personal taste. Omitting them can make the code more brittle. If a second statement is later added to the "then" clause, a common mistake would be forgetting to add the newly required braces. The compiler cannot catch this sort of error; you'll just get the wrong results.

The if-then-else Statement

The if-then-else statement provides a secondary path of execution when an "if" clause evaluates to false. You could use an if-then-else statement in the applyBrakes method to take some action if the brakes are applied when the bicycle is not in motion. In this case, the action is to simply print an error message stating that the bicycle has already stopped.

void applyBrakes(){

 if (isMoving) {

 currentSpeed--;

 } else {

 System.err.println("The bicycle has already stopped!");

 }

}

The following program, IfElseDemo, assigns a grade based on the value of a test score: an A for a score of 90% or above, a B for a score of 80% or above, and so on.

class IfElseDemo {

 public static void main(String[] args) {

 int testscore = 76;

 char grade;

 if (testscore >= 90) {

 grade = 'A';

 } else if (testscore >= 80) {

 grade = 'B';

 } else if (testscore >= 70) {

 grade = 'C';

 } else if (testscore >= 60) {

 grade = 'D';

 } else {

 grade = 'F';

 }

 System.out.println("Grade = " + grade);

 }

}

The output from the program is:

 Grade = C

You may have noticed that the value of testscore can satisfy more than one expression in the compound statement: 76 >= 70 and 76 >= 60. However, once a condition is satisfied, the appropriate statements are executed (grade = 'C';) and the remaining conditions are not evaluated.

The switch Statement

Unlike if-then and if-then-else statements, the switch statement can have a number of possible execution paths. A switch works with the byte, short, char, and int primitive data types. It also works with enumerated types (discussed in Enum Types), the String class, and a few special classes that wrap certain primitive types: Character, Byte, Short, and Integer (discussed in Numbers and Strings).

The following code example, SwitchDemo, declares an int named month whose value represents a month. The code displays the name of the month, based on the value of month, using the switch statement.

public class SwitchDemo {

 public static void main(String[] args) {

 int month = 8;

 String monthString;

 switch (month) {

 case 1: monthString = "January"; break;

 case 2: monthString = "February"; break;

 case 3: monthString = "March"; break;

 case 4: monthString = "April"; break;

 case 5: monthString = "May"; break;

 case 6: monthString = "June"; break;

 case 7: monthString = "July"; break;

 case 8: monthString = "August"; break;

 case 9: monthString = "September"; break;

 case 10: monthString = "October"; break;

 case 11: monthString = "November"; break;

 case 12: monthString = "December"; break;

 default: monthString = "Invalid month"; break;

 }

 System.out.println(monthString);

 }

}

In this case, August is printed to standard output.

The body of a switch statement is known as a switch block. A statement in the switch block can be labeled with one or more case or default labels. The switch statement evaluates its expression, then executes all statements that follow the matching case label.

You could also display the name of the month with if-then-else statements:

int month = 8;

if (month == 1) {

 System.out.println("January");

} else if (month == 2) {

 System.out.println("February");

}

. . . // and so on

Deciding whether to use if-then-else statements or a switch statement is based on readability and the expression that the statement is testing. An if-then-else statement can test expressions based on ranges of values or conditions, whereas a switch statement tests expressions based only on a single integer, enumerated value, or String object.

Another point of interest is the break statement. Each break statement terminates the enclosing switch statement. Control flow continues with the first statement following the switch block. The break statements are necessary because without them, statements in switch blocks fall through: All statements after the matching case label are executed in sequence, regardless of the expression of subsequent case labels, until a break statement is encountered. The program SwitchDemoFallThrough shows statements in a switch block that fall through. The program displays the month corresponding to the integer month and the months that follow in the year:

public class SwitchDemoFallThrough {

 public static void main(String args[]) {

 java.util.ArrayList<String> futureMonths = new java.util.ArrayList<String>();

 int month = 8;

 switch (month) {

 case 1: futureMonths.add("January");

 case 2: futureMonths.add("February");

 case 3: futureMonths.add("March");

 case 4: futureMonths.add("April");

 case 5: futureMonths.add("May");

 case 6: futureMonths.add("June");

 case 7: futureMonths.add("July");

 case 8: futureMonths.add("August");

 case 9: futureMonths.add("September");

 case 10: futureMonths.add("October");

 case 11: futureMonths.add("November");

 case 12: futureMonths.add("December"); break;

 default: break;

 }

 if (futureMonths.isEmpty()) {

 System.out.println("Invalid month number");

 } else {

 for (String monthName : futureMonths) {

 System.out.println(monthName);

 }

 }

 }

}

This is the output from the code:

August

September

October

November

December

Technically, the final break is not required because flow falls out of the switch statement. Using a break is recommended so that modifying the code is easier and less error prone. The default section handles all values that are not explicitly handled by one of the case sections.

The following code example, SwitchDemo2, shows how a statement can have multiple case labels. The code example calculates the number of days in a particular month:

class SwitchDemo2 {

 public static void main(String[] args) {

 int month = 2;

 int year = 2000;

 int numDays = 0;

 switch (month) {

 case 1:

 case 3:

 case 5:

 case 7:

 case 8:

 case 10:

 case 12:

 numDays = 31;

 break;

 case 4:

 case 6:

 case 9:

 case 11:

 numDays = 30;

 break;

 case 2:

 if (((year % 4 == 0) && !(year % 100 == 0))

 || (year % 400 == 0))

 numDays = 29;

 else

 numDays = 28;

 break;

 default:

 System.out.println("Invalid month.");

 break;

 }

 System.out.println("Number of Days = " + numDays);

 }

}

This is the output from the code:

 Number of Days = 29

Using Strings in switch Statements

In Java SE 7 and later, you can use a String object in the switch statement's expression. The following code example, StringSwitchDemo, displays the number of the month based on the value of the String named month:

public class StringSwitchDemo {

 public static int getMonthNumber(String month) {

 int monthNumber = 0;

 if (month == null) { return monthNumber; }

 switch (month.toLowerCase()) {

 case "january": monthNumber = 1; break;

 case "february": monthNumber = 2; break;

 case "march": monthNumber = 3; break;

 case "april": monthNumber = 4; break;

 case "may": monthNumber = 5; break;

 case "june": monthNumber = 6; break;

 case "july": monthNumber = 7; break;

 case "august": monthNumber = 8; break;

 case "september": monthNumber = 9; break;

 case "october": monthNumber = 10; break;

 case "november": monthNumber = 11; break;

 case "december": monthNumber = 12; break;

 default: monthNumber = 0; break;

 }

 return monthNumber;

 }

 public static void main(String[] args) {

 String month = "August";

 int returnedMonthNumber =

 StringSwitchDemo.getMonthNumber(month);

 if (returnedMonthNumber == 0) {

 System.out.println("Invalid month");

 } else {

 System.out.println(returnedMonthNumber);

 }

 }

}

The output from this code is 8.

The String in the switch expression is compared with the expressions associated with each case label as if the String.equals method were being used. In order for the StringSwitchDemo example to accept any month regardless of case, month is converted to lowercase (with the toLowerCase method), and all the strings associated with the case labels are in lowercase.

Note: This example checks if the expression in the switch statement is null. Ensure that the expression in any switch statement is not null to prevent a NullPointerException from being thrown.

The while and do-while Statements

The while statement continually executes a block of statements while a particular condition is true. Its syntax can be expressed as:

while (expression) {

 statement(s)

}

The while statement evaluates expression, which must return a boolean value. If the expression evaluates to true, the while statement executes the statement(s) in the while block. The while statement continues testing the expression and executing its block until the expression evaluates to false. Using the while statement to print the values from 1 through 10 can be accomplished as in the following WhileDemo program:

class WhileDemo {

 public static void main(String[] args){

 int count = 1;

 while (count < 11) {

 System.out.println("Count is: " + count);

 count++;

 }

 }

}

You can implement an infinite loop using the while statement as follows:

while (true){

 // your code goes here

}

The Java programming language also provides a do-while statement, which can be expressed as follows:

do {

 statement(s)

} while (expression);

The difference between do-while and while is that do-while evaluates its expression at the bottom of the loop instead of the top. Therefore, the statements within the do block are always executed at least once, as shown in the following DoWhileDemo program:

class DoWhileDemo {

 public static void main(String[] args){

 int count = 1;

 do {

 System.out.println("Count is: " + count);

 count++;

 } while (count <= 11);

 }

}

The for Statement

The for statement provides a compact way to iterate over a range of values. Programmers often refer to it as the "for loop" because of the way in which it repeatedly loops until a particular condition is satisfied. The general form of the for statement can be expressed as follows:

for (initialization; termination; increment) {

 statement(s)
}

When using this version of the for statement, keep in mind that:

· The initialization expression initializes the loop; it's executed once, as the loop begins.

· When the termination expression evaluates to false, the loop terminates.

· The increment expression is invoked after each iteration through the loop; it is perfectly acceptable for this expression to increment or decrement a value.

The following program, ForDemo, uses the general form of the for statement to print the numbers 1 through 10 to standard output:

class ForDemo {

 public static void main(String[] args){

 for(int i=1; i<11; i++){

 System.out.println("Count is: " + i);

 }

 }

}

The output of this program is:

Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Count is: 6

Count is: 7

Count is: 8

Count is: 9

Count is: 10

Notice how the code declares a variable within the initialization expression. The scope of this variable extends from its declaration to the end of the block governed by the for statement, so it can be used in the termination and increment expressions as well. If the variable that controls a for statement is not needed outside of the loop, it's best to declare the variable in the initialization expression. The names i, j, and k are often used to control for loops; declaring them within the initialization expression limits their life span and reduces errors.

The three expressions of the for loop are optional; an infinite loop can be created as follows:

for (; ;) { // infinite loop

 // your code goes here

}

The for statement also has another form designed for iteration through Collections and arrays This form is sometimes referred to as the enhanced for statement, and can be used to make your loops more compact and easy to read. To demonstrate, consider the following array, which holds the numbers 1 through 10:

int[] numbers = {1,2,3,4,5,6,7,8,9,10};

The following program, EnhancedForDemo, uses the enhanced for to loop through the array:

class EnhancedForDemo {

 public static void main(String[] args){

 int[] numbers = {1,2,3,4,5,6,7,8,9,10};

 for (int item : numbers) {

 System.out.println("Count is: " + item);

 }

 }

}

In this example, the variable item holds the current value from the numbers array. The output from this program is the same as before:

Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Count is: 6

Count is: 7

Count is: 8

Count is: 9

Count is: 10

We recommend using this form of the for statement instead of the general form whenever possible.

Branching Statements

The break Statement

The break statement has two forms: labeled and unlabeled. You saw the unlabeled form in the previous discussion of the switch statement. You can also use an unlabeled break to terminate a for, while, or do-while loop, as shown in the following BreakDemo program:

class BreakDemo {

 public static void main(String[] args) {

 int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076,

 2000, 8, 622, 127 };

 int searchfor = 12;

 int i;

 boolean foundIt = false;

 for (i = 0; i < arrayOfInts.length; i++) {

 if (arrayOfInts[i] == searchfor) {

 foundIt = true;

 break;
 }

 }

 if (foundIt) {

 System.out.println("Found " + searchfor

 + " at index " + i);

 } else {

 System.out.println(searchfor

 + " not in the array");

 }

 }

}

This program searches for the number 12 in an array. The break statement, shown in boldface, terminates the for loop when that value is found. Control flow then transfers to the print statement at the end of the program. This program's output is:

Found 12 at index 4

An unlabeled break statement terminates the innermost switch, for, while, or do-while statement, but a labeled break terminates an outer statement. The following program, BreakWithLabelDemo, is similar to the previous program, but uses nested for loops to search for a value in a two-dimensional array. When the value is found, a labeled break terminates the outer for loop (labeled "search"):

class BreakWithLabelDemo {

 public static void main(String[] args) {

 int[][] arrayOfInts = { { 32, 87, 3, 589 },

 { 12, 1076, 2000, 8 },

 { 622, 127, 77, 955 }

 };

 int searchfor = 12;

 int i;

 int j = 0;

 boolean foundIt = false;

 search:

 for (i = 0; i < arrayOfInts.length; i++) {

 for (j = 0; j < arrayOfInts[i].length; j++) {

 if (arrayOfInts[i][j] == searchfor) {

 foundIt = true;

 break search;

 }

 }

 }

 if (foundIt) {

 System.out.println("Found " + searchfor +

 " at " + i + ", " + j);

 } else {

 System.out.println(searchfor

 + " not in the array");

 }

 }

}

This is the output of the program.

 Found 12 at 1, 0

The break statement terminates the labeled statement; it does not transfer the flow of control to the label. Control flow is transferred to the statement immediately following the labeled (terminated) statement.

The continue Statement

The continue statement skips the current iteration of a for, while , or do-while loop. The unlabeled form skips to the end of the innermost loop's body and evaluates the boolean expression that controls the loop. The following program, ContinueDemo , steps through a String, counting the occurences of the letter "p". If the current character is not a p, the continue statement skips the rest of the loop and proceeds to the next character. If it is a "p", the program increments the letter count.

class ContinueDemo {

 public static void main(String[] args) {

 String searchMe = "peter piper picked a peck of pickled peppers";

 int max = searchMe.length();

 int numPs = 0;

 for (int i = 0; i < max; i++) {

 //interested only in p's

 if (searchMe.charAt(i) != 'p')

 continue;

 //process p's

 numPs++;

 }

 System.out.println("Found " + numPs + " p's in the string.");

 }

}

Here is the output of this program:

Found 9 p's in the string.

To see this effect more clearly, try removing the continue statement and recompiling. When you run the program again, the count will be wrong, saying that it found 35 p's instead of 9.

A labeled continue statement skips the current iteration of an outer loop marked with the given label. The following example program, ContinueWithLabelDemo, uses nested loops to search for a substring within another string. Two nested loops are required: one to iterate over the substring and one to iterate over the string being searched. The following program, ContinueWithLabelDemo, uses the labeled form of continue to skip an iteration in the outer loop.

class ContinueWithLabelDemo {

 public static void main(String[] args) {

 String searchMe = "Look for a substring in me";

 String substring = "sub";

 boolean foundIt = false;

 int max = searchMe.length() - substring.length();

 test:

 for (int i = 0; i <= max; i++) {

 int n = substring.length();

 int j = i;

 int k = 0;

 while (n-- != 0) {

 if (searchMe.charAt(j++)

 != substring.charAt(k++)) {

 continue test;

 }

 }

 foundIt = true;

 break test;

 }

 System.out.println(foundIt ? "Found it" :

 "Didn't find it");

 }

}

Here is the output from this program.

 Found it

The return Statement

The last of the branching statements is the return statement. The return statement exits from the current method, and control flow returns to where the method was invoked. The return statement has two forms: one that returns a value, and one that doesn't. To return a value, simply put the value (or an expression that calculates the value) after the return keyword.

 return ++count;

The data type of the returned value must match the type of the method's declared return value. When a method is declared void, use the form of return that doesn't return a value.

 return;

The Classes and Objects lesson will cover everything you need to know about writing methods.

